Exercises

Vectors and Matrices - Solutions

Exercise 1.

a)

$$
3 u+2 v-w=3\left(\begin{array}{r}
-1 \\
2 \\
-3
\end{array}\right)+2\left(\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right)-\left(\begin{array}{l}
2 \\
3 \\
2
\end{array}\right)=\left(\begin{array}{r}
-3 \\
-1 \\
-11
\end{array}\right)
$$

b)

$$
w-\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)+\mathbf{e}_{3}=\left(\begin{array}{l}
2 \\
3 \\
2
\end{array}\right)-\left[\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right]+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right)
$$

c)

$$
\frac{1}{2}(u-1)+4(v-w)=\left(\begin{array}{r}
-5 \\
-19.5 \\
-10
\end{array}\right)
$$

Exercise 2.
a) $A+B=\left(\begin{array}{rrr}9 & -6 & 0 \\ -18 & 2 & 4\end{array}\right)$
b) $A B$ is undefined.

$$
\begin{aligned}
A B^{\top} & =\left(\begin{array}{rrr}
5 & -1 & 2 \\
-8 & 3 & 7
\end{array}\right)\left(\begin{array}{rr}
4 & -10 \\
-5 & -1 \\
-2 & -3
\end{array}\right)=\left(\begin{array}{rr}
21 & -55 \\
-61 & 56
\end{array}\right) \\
B A^{\top} & =\left(A B^{\top}\right)^{\top}=\left(\begin{array}{rr}
21 & -61 \\
-55 & 56
\end{array}\right) \\
\text { c) } A 1 & =\binom{6}{2} \\
\mathbf{e}_{2}^{\top} A & =(-8,3,7)
\end{aligned}
$$

d) $\mathbf{g}^{\top} \boldsymbol{A}^{\top}=(1,3,-2)\left(\begin{array}{rr}5 & -8 \\ -1 & 3 \\ 2 & 7\end{array}\right)=(-2,-13)$
$\mathbf{g}^{\top} \mathbf{h}=(1,3,-2)\left(\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right)=-4$
$\mathbf{g} \mathbf{h}^{\top}=\left(\begin{array}{r}1 \\ 3 \\ -2\end{array}\right)(-2,0,1)=\left(\begin{array}{rrr}-2 & 0 & 1 \\ -6 & 0 & 3 \\ 4 & 0 & -2\end{array}\right)$

Exercise 3.

a) We want to find $a \in \mathbb{R}$ such that $\left\|\left[\begin{array}{c}a \\ -3 a\end{array}\right]\right\|=1$. So we have to solve

$$
\left\|\binom{a}{-3 a}\right\|=\left\|a\binom{1}{-3}\right\|=|a|\left\|\binom{1}{-3}\right\|=|a| \sqrt{1+9}=|a| \sqrt{10} \stackrel{!}{=} 1
$$

and thus obtain the two solutions $a= \pm \frac{1}{\sqrt{10}}$.
b) We want to find vectors $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ that are orthogonal to u, i.e. vectors that satisfy $\langle u, x\rangle=0$. We have to solve

$$
0 \stackrel{!}{=}\left\langle\left[\begin{array}{c}
5 \\
-1
\end{array}\right],\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right\rangle=5 x_{1}-x_{2}
$$

which yields $x_{2}=5 x_{1}$. Thus all vectors $x=\left[\begin{array}{c}x_{1} \\ 5 x_{1}\end{array}\right]$ with $x_{1} \in \mathbb{R}$ are orthogonal to u.
c) We compute the norms of the vectors as

$$
\begin{aligned}
\|v\| & =\sqrt{4+16+25+4}=\sqrt{49}=7 \\
\text { and }\|w\| & =\sqrt{2^{2}+(-1)^{2}+3^{2}}=\sqrt{14}
\end{aligned}
$$

and thus obtain the normalized vectors

$$
\begin{aligned}
& v_{\text {norm }}=\frac{v}{\|v\|}=\frac{1}{7}\left(\begin{array}{r}
-2 \\
4 \\
-5 \\
2
\end{array}\right) \\
& w_{\text {norm }}=\frac{w}{\|w\|}=\frac{1}{\sqrt{14}}\left(\begin{array}{r}
2 \\
-1 \\
3
\end{array}\right)
\end{aligned}
$$

d) The vectors orthogonal to $(2,-3)^{\top}$ satisfy

$$
0=(2,-3)\binom{x_{1}}{x_{2}}=2 x_{1}-3 x_{2} \quad \Longrightarrow \quad x_{2}=\frac{2}{3} x_{1}
$$

and are thus the vectors $x=\left[\begin{array}{c}x_{1} \\ \frac{2}{3} x_{1}\end{array}\right]$ with $x_{1} \in \mathbb{R}$. To be orthonormal, the vectors x must satisfy $1=\|x\|=\sqrt{\left(1 x_{1}\right)^{2}+\left(\frac{2}{3} x_{1}\right)^{2}}=\sqrt{\frac{13}{9} x_{1}^{2}}=\frac{\sqrt{13}}{3}\left|x_{1}\right|$. Hence, $\left|x_{1}\right|=\frac{3}{\sqrt{13}}$ which implies that $x_{1}=\frac{3}{\sqrt{13}}$ or $x_{1}=-\frac{3}{\sqrt{13}}$. Thus,

$$
x=\frac{1}{\sqrt{13}}\left[\begin{array}{l}
3 \\
2
\end{array}\right] \quad \text { or } \quad x=-\frac{1}{\sqrt{13}}\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

Exercise 4.

1. Scheme of the process

2. Productionmatrices

$$
\mathrm{V}^{(0,1)}=\left(\begin{array}{ccc}
0 & 3 & 1 \\
1 & 2 & 2 \\
3 & 1 & 1 \\
2 & 0 & 2
\end{array}\right) \quad \mathrm{V}^{(1,2)}=\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 3 & 2 \\
4 & 1 & 2
\end{array}\right)
$$

Quantity vectors:

$$
\begin{gathered}
x^{(0)}=\left(\begin{array}{l}
x_{1}^{(0)} \\
x_{2}^{(0)} \\
x_{3}^{(0)} \\
x_{4}^{(0)}
\end{array}\right) \triangleq \text { vector of resources } \\
x^{(1)}=\left(\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right) \triangleq \text { vector of intermediate products } \\
x^{(2)}=\left(\begin{array}{l}
x_{1}^{(2)} \\
x_{2}^{(2)} \\
x_{3}^{(2)}
\end{array}\right) \triangleq \text { vector of end products }
\end{gathered}
$$

We have

$$
\begin{gathered}
x^{(0)}=\mathrm{V}^{(0,1)} x^{(1)}=\begin{array}{c}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\mathrm{R}_{1} \\
\mathrm{R}_{2} \\
\mathrm{R}_{3} \\
\mathrm{R}_{4}
\end{array}\left(\begin{array}{lll}
0 & 3 & 1 \\
1 & 2 & 2 \\
3 & 1 & 1 \\
2 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1}^{(1)} \\
x_{2}^{(1)} \\
x_{3}^{(1)}
\end{array}\right) \\
\mathrm{P}_{1} \mathrm{P}_{2} \mathrm{P}_{3} \\
x^{(1)}=\mathrm{V}^{(1,2)} x^{(2)}=\begin{array}{l}
\mathrm{I}_{1} \\
\mathrm{I}_{2} \\
\mathrm{I}_{3}
\end{array}\left(\begin{array}{lll}
1 & 2 & 1 \\
0 & 3 & 2 \\
4 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
x_{1}^{(2)} \\
x_{2}^{(2)} \\
x_{3}^{(2)}
\end{array}\right)
\end{gathered}
$$

This implies

$$
x^{(0)}=V^{(0,1)} x^{(1)}=V^{(0,1)} V^{(1,2)} x^{(2)}
$$

For $x^{(2)}=\left(\begin{array}{c}50 \\ 100 \\ 200\end{array}\right)$ we get
$x^{(1)}=\left(\begin{array}{lll}1 & 2 & 1 \\ 0 & 3 & 2 \\ 4 & 1 & 2\end{array}\right)\left(\begin{array}{c}50 \\ 100 \\ 200\end{array}\right)=\left(\begin{array}{l}450 \\ 700 \\ 700\end{array}\right) \quad \begin{aligned} & \text { Quantity of required inter- } \\ & \text { mediate products }\end{aligned}$

$$
x^{(0)}=\left(\begin{array}{lll}
0 & 3 & 1 \\
1 & 2 & 2 \\
3 & 1 & 1 \\
2 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
450 \\
700 \\
700
\end{array}\right)=\left(\begin{array}{l}
2800 \\
3250 \\
2750 \\
2300
\end{array}\right) \begin{aligned}
& \text { Quantity of required re- } \\
& \text { sources }
\end{aligned}
$$

